3(2x^2+4)=27

Simple and best practice solution for 3(2x^2+4)=27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(2x^2+4)=27 equation:



3(2x^2+4)=27
We move all terms to the left:
3(2x^2+4)-(27)=0
We multiply parentheses
6x^2+12-27=0
We add all the numbers together, and all the variables
6x^2-15=0
a = 6; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·6·(-15)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*6}=\frac{0-6\sqrt{10}}{12} =-\frac{6\sqrt{10}}{12} =-\frac{\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*6}=\frac{0+6\sqrt{10}}{12} =\frac{6\sqrt{10}}{12} =\frac{\sqrt{10}}{2} $

See similar equations:

| -5x^2+14x+29=0 | | 4(x-9)+2-8x=6 | | 125=7d+6 | | 3x-x+5-6=7x+4 | | -3j+2=-16 | | -4y+12=-4(2y+16) | | 44=4t | | 4x-8x+5=35+6 | | 12c-20=20+7c | | 21+73=7x+6-20× | | -9-5x+2x=-33 | | (x+10)x3=5x | | -3(1+7n)=-3+8n | | 50=36-9b | | 3h+-3=6 | | (92+x)36+(92−(40+x))⋅48=C | | -4(-4v+5)-v=3(v-7)-5 | | 7.2+w/7=-10.3 | | y/11+1=4 | | 4/8y-5=-1 | | 7/6x+4=3/12x-2 | | 31-(-1)=x | | 16=3v+10 | | (1/4)c=2+(3/4) | | C=(92−x)36+(92−40)⋅48 | | 2x-4(x-1)=16+2x | | 5x+36=9x-4 | | 6=2-2x10 | | 9=x−3 | | 6(6-6x)=324 | | {n}{6}+5=4 | | 3x+14+5x=12 |

Equations solver categories